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Abstract. The recently proposed Riemannian Trust-Region method can
be applied to the problem of computing extreme eigenpairs of a matrix
pencil, with strong global convergence and local convergence properties.
This paper addresses inherent inefficiencies of an explicit trust-region
mechanism. We propose a new algorithm, the Implicit Riemannian Trust-
Region method for extreme eigenpair computation, which seeks to over-
come these inefficiencies while still retaining the favorable convergence
properties.

1 Introduction

Consider n × n symmetric matrices A and B, with B positive definite. The
generalized eigenvalue problem

Ax = λBx

is known to admit n real eigenvalues λ1 ≤ . . . ≤ λn, along with associated B-
orthonormal eigenvectors v1, . . . , vn (see [1]). We seek here to compute the p left-
most eigenvectors of the pencil (A, B). It is known that the leftmost eigenspace
U = colsp(v1, . . . , vp) of (A, B) is the column space of any minimizer of the
generalized Rayleigh quotient

f : R
n×p
∗

→ R : Y $→ trace
(

(Y T BY )−1(Y T AY )
)

, (1)

where R
n×p
∗ denotes the set of full-rank n × p matrices.
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This result underpins a number of methods based on finding the extreme
points of the generalized Rayleigh quotient (see [2–7] and references therein).
Here, we consider the recently proposed Riemannian Trust-Region (RTR) method
[8, 9]. This method formulates the eigenvalue problem as an optimization prob-
lem on a Riemannian manifold, utilizing a trust-region mechanism to find a
solution. Similar to Euclidean trust-region methods, the RTR method ensures
strong global convergence properties while allowing superlinear convergence near
the solution. However, the classical trust-region mechanism has some inherent
inefficiencies. When the trust-region radius is too large, valuable time may be
spent computing an update that may be rejected. When the trust-region radius
is too small, we may reject good updates lying outside the trust-region. A second
problem with the RTR method is typical of methods where the outer stopping
criterion is evaluated only after exiting the inner iteration: in almost all cases,
the last call to the inner iteration will perform more work than necessary to
satisfy the outer stopping criterion.

In the current paper, we explore solutions to both of the problems described
above. We present an analysis providing us knowledge of the model fidelity at
every step of the inner iteration, allowing our trust-region to be based directly
on the trustworthiness of the model. We propose a new algorithm, the Implicit
Riemannian Trust-Region (IRTR) method, exploiting this analysis.

2 Riemannian Trust-Region Method with Newton Model

The RTR method can be used to minimize the generalized Rayleigh quotient (1).
The right-hand side of this function depends only on colsp(Y ), so that f induces
a real-valued function on the set of p-dimensional subspaces of Rn. (This set is
known as the Grassmann manifold, which can be endowed with a Riemannian
structure [4, 10].) The RTR method iteratively computes the minimizer of f
by (approximately) minimizing successive models of f . The minimization of the
models is done via an iterative process, which is referred to as the inner iteration,
to distinguish it with the principal outer iteration. We present here the process
in a way that does not require a background in differential geometry; we refer
to [11] for the mathematical foundations of the technique.

Let Y be a full-rank, n × p matrix. We desire a correction S of Y such that
f(Y + S) < f(Y ). A difficulty is that corrections of Y that do not modify its
column space do not affect the value of the cost function. This situation leads to
unpleasant degeneracy if it is not addressed. Therefore, we require S to satisfy
some complementarity condition with respect to the space VY := {Y M : M ∈
Rp×p}. Here, in order to simplify later developments, we impose complementarity
via B-orthogonality, namely S ∈ HY where

HY = {Z ∈ R
n×p : Y T BZ = 0}.

Consequently, the task is to minimize the function

f̂Y (S) := trace
(

((Y + S)T B(Y + S))−1((Y + S)T A(Y + S))
)

, S ∈ HY .



The RTR method constructs a model mY of f̂Y and computes an update
S which approximately minimizes mY , so that the inner iteration attempts to
solve the following problem:

min mY (S), S ∈ HY , ‖S‖2 ≤ ∆,

where ∆ (the trust-region radius) denotes the region in which we trust mY to
approximate f̂Y . The next iterate and trust-region radius are determined by the
performance of mY with respect to f̂Y . This performance ratio is measured by
the quotient:

ρY (S) =
f̂Y (0) − f̂Y (S)

mY (0) − mY (S)
.

Low values of ρY (S) (close to zero) indicate that the model mY at S is not a
good approximation to f̂Y . In this scenario, the trust-region radius is reduced
and the update Y + S is rejected. Higher values of ρY (S) allow the acceptance
of Y + S as the next iterate, and a value of ρY (S) close to one suggests good
approximation of f̂Y by mY , allowing the trust-region radius to be enlarged.

Usually, the model mY is chosen as a quadratic function approximating f̂Y .
In the sequel, in contrast to [9] where the quadratic term of the model was un-
specified, we assume that mY is the Newton model, i.e., the quadratic expansion
of f̂Y at S = 0. Then, assuming from here on that Y T BY = Ip, we have

mY (S) = trace
(

Y T AY
)

+ 2trace
(

ST AY
)

+ trace
(

ST
(

AS − BS(Y T AY )
))

= f̂Y (0) + trace
(

ST∇f̂Y

)

+
1

2
trace

(

ST HY [S]
)

,

where the gradient and the effect of the Hessian of f̂Y are identified as

∇f̂Y = 2PBY AY HY [S] = 2PBY

(

AS − BS(Y T AY )
)

,

and where PBY = I − BY (Y T BBY )−1Y T B is the orthogonal projector on the
space perpendicular to the column space of BY .

Simple manipulation shows the following:

f̂Y (0) − f̂Y (S) = trace
(

Y T AY − (I + ST BS)−1(Y + S)T A(Y + S)
)

= trace
(

(I + ST BS)−1(ST BS(Y T AY ) − 2ST AY − ST AS)
)

.

Consider the case where p = 1. The above equation simplifies to

f̂y(0) − f̂y(s) = (1 + sT Bs)−1
(

sT BsyT Ay − 2sT Ay − sT As
)

= (1 + sT Bs)−1 (my(0) − my(s)) ,

so that

ρy(s) =
f̂y(0) − f̂y(s)

my(0) − my(s)
=

1

1 + sT Bs
. (2)

This allows the model performance ratio ρy to be constantly evaluated as the
model minimization progresses, simply by tracking the B-norm of the current
update vector.



3 Implicit Riemannian Trust-Region Method

In this section, we explore the possibility of selecting the trust-region as a sublevel
set of the performance ratio ρY . We dub this approach the Implicit Riemannian
Trust-Region method.

3.1 Case p = 1

The analysis of ρ in the previous section shows that for the generalized Rayleigh
quotient with p = 1, the performance of the model decreases as the iterate moves
away from zero. However, in the case of the p = 1 generalized Rayleigh quotient,
ρy(s) has a simple relationship with ‖s‖B. Therefore, by monitoring the B-norm
of the inner iterate, we can easily determine the value of ρ for a given inner
iterate. Furthermore, the relationship between ρ and the B-norm of a vector,
allows us to move along a search direction to a specific value of ρ. These two
things, combined, enable us to redefine the trust-region based instead on the
value of ρ.

The truncated conjugate gradient proposed in [9] for use in the simple RTR
algorithm seeks to minimize the model mY within a trust-region defined explic-
itly as {s : ‖s‖2 ≤ ∆}. Here, we change the definition of the trust-region to
{s : ρy(s) ≥ ρ′}, for some ρ′ ∈ (0, 1). The necessary modifications to this algo-
rithm are very simple. The definition of the trust-region occurs in three places:
when detecting whether the trust-region has been breached; when constraining
the update vector in the case that the trust-region was breached; and when
constraining the update vector in the case that we have detected a direction of
negative curvature. The new inner iteration is listed in Algorithm 1, with the
differences highlighted.

Having stated the definition of the implicit trust-region, based on ρ, we need
a mechanism for following a search direction to the edge of the trust-region.
That is, at some outer step k and given sj and a search direction dj , we wish to
compute s = sj + τdj such that ρyk

(s) = ρ′. Given ρ′ and denoting

∆ρ′ =

√

1

ρ′
− 1, (3)

the desired value of τ is given by

τ =
−dT

j Bsj +
√

(dT
j Bsj)2 + dT

j Bdj(∆2
ρ′ − sT

j Bsj)

dT
j Bdj

. (4)

A careful implementation precludes the need for any more matrix multiplications
against B than are necessary to perform the iterations.

Another enhancement in Algorithm 1 is that the outer stopping criterion
is tested during the inner iteration. This technique is not novel in the context
of eigensolvers with inner iterations, having been proposed by Notay [12]. Our
motivation for introducing this test is that, when it is absent, the final outer



Algorithm 1 (Preconditioned Truncated CG (IRTR))
Data: A,B symmetric, B positive definite, ρ′ ∈ (0, 1), preconditioner M
Input: Iterate y, yT By = 1
Set s0 = 0, r0 = ∇f̂y, z0 = M−1r0, d0 = −z0

for j = 0, 1, 2, . . .

Check κ/θ stopping criterion

if ‖rj‖2 ≤ ‖r0‖2 min
˘

κ, ‖r0‖θ
2

¯

return sj

Check curvature of current search direction

if dT
j Hy[dj ] ≤ 0

Compute τ such that s = sj + τdj satisfies ρy(s) = ρ′

return s

Set αj = (zT
j rj)/(d

T
j Hy[dj ])

Generate next inner iterate

Set sj+1 = sj + αjdj

Check implicit trust-region

if ρy(sj+1) < ρ′

Compute τ ≥ 0 such that s = sj + τdj satisfies ρy(s) = ρ′

return s

Use CG recurrences to update residual and search direction

Set rj+1 = rj + αjHy[dj ]
Set zj+1 = M−1rj+1

Set βj+1 = (zT
j+1rj+1)/(zT

j rj)
Set dj+1 = −zj+1 + βj+1dj

Check outer stopping criterion

Compute ‖∇f̂y+sj+1
‖2 and test

end for.

step may reach a much higher accuracy than specified by the outer stopping
criterion, resulting in a waste of computational effort. Also, while Notay proposed
a formula for the inexpensive evaluation of the outer norm based on the inner
iteration, we must rely on a slightly more expensive, but less frequent, explicit
evaluation of the outer stopping criterion.

The product of this iteration is an update vector sj which is guaranteed to
lie inside of the ρ-based trust-region. The result is that the ρ value of the new
iterate need not be explicitly computed, the new iterate can be automatically
accepted, with an update vector constrained by model fidelity instead of a dis-
cretely chosen trust-region radius based on the performance of the last iterate.
An updated outer iteration is presented in Algorithm 2, which also features an
optional subspace acceleration enhancement à la Davidson [13].



Algorithm 2 (Implicit Riemannian Trust-Region Algorithm)
Data: A,B symmetric, B positive definite, ρ′ ∈ (0, 1)
Input: Initial subspace W0

for k = 0, 1, 2, . . .

Model-based Minimization

Generate yk using a Rayleigh-Ritz procedure on Wk

Compute ∇f̂yk
and check ‖∇f̂yk

‖2

Compute sk to approximately minimize myk
such that ρ(sk) ≥ ρ′ (Algorithm 1)

Generate next subspace

if performing subspace acceleration
Compute new acceleration subspace Wk+1 from Wk and sk

else
Set Wk+1 = colsp(yk + sk)

end

end for.

3.2 A Block Algorithm

The analysis of Section 2 seems to preclude a simple formula for ρ in the case
that p > 1. We wish, however, to have a block algorithm. The solution is to
decouple the block Rayleigh quotient into the sum of p separate rank-1 Rayleigh
quotients, which can then be addressed individually using the IRTR strategy.
This is done as follows.

Assume that our iterates satisfy Y T AY = Σ = diag(σ1, . . . ,σp), in addition
to Y T BY = Ip. In fact, this is a natural consequence of the Rayleigh-Ritz
process. Then given Y =

[

y1 . . . yp

]

, the model mY can be rewritten:

mY (S) = trace
(

Σ + 2ST AY + ST (AS − BSΣ)
)

=
p

∑

i=1

(

σi + 2sT
i Ayi + sT

i (A − σiB)si

)

=
p

∑

i=1

myi
(si).

It should be noted that the update vectors for the decoupled minimizations
must have the original orthogonality constraints in place. That is, instead of
requiring only that yT

i Bsi = 0, we require that Y T Bsi = 0 for each si. This is
necessary to guarantee that the next iterate, Y + S, has full rank, so that the
Rayleigh quotient is defined.

As for the truncated conjugate gradient, the p individual IRTR subproblems
should be solved simultaneously, with the inner iteration stopped as soon as any
of the iterations satisfy one of the inner stopping criteria (exceeded trust-region
or detected negative curvature). If only a subset of iterations are allowed to
continue, then the κ/θ inner stopping criterion may not be feasible.

The described method attempts to improve on the RTR, while retaining the
strong global and local convergence properties of the RTR. The model fidelity
guaranteed by the implicit trust-region mechanism allows for a straightforward
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Fig. 1. Figures illustrating the efficiency of RTR vs. IRTR for different values of ρ′, in
the presence of a preconditioned inner iteration, for the BCSST24 data.

proof of global convergence. Related work [14] presents the proofs of global con-
vergence, along with a discussion regarding the consequences of early termina-
tion of the inner iteration due to testing the outer stopping criterion and an
exploration of the RTR method in light of the ρ analysis presented here.

4 Numerical Results

The IRTR method seeks to overcome the inefficiencies of the RTR method, such
as the rejection of computed updates and the limitations due to the discrete
nature of the trust-region radius. We compare the performance of the IRTR
with that of the classical RTR. The following experiments were performed in
MATLAB (R14) under Mac OSX. Figure 1 considers a generalized eigenvalue
problem with a preconditioned inner iteration. The matrices A and B are from
the Harwell-Boeing collection BCSST24. The problem is of size n = 3562 and we
are seeking the leftmost p = 5 eigenvalues. The inner iteration is preconditioned
using an exact factorization of A. Two experiments are run: with and without
subspace acceleration. When in effect, the subspace acceleration strategy occurs
over the 10-dimensional subspace colsp([Yk, Sk]). The RTR is tested with a value
of ρ′ = 0.1, while the IRTR is run for multiple values of ρ′. These experiments
demonstrate that the IRTR method is able to achieve a greater efficiency than
the RTR method.

5 Conclusion

This paper presents an optimization-based analysis of the symmetric, generalized
eigenvalue problem which explores the relationship between the inner and outer
iterations. The paper proposes the Implicit Riemannian Trust-Region method,
which seeks to alleviate inefficiencies resulting from the inner/outer divide, while



still preserving the strong convergence properties of the RTR method. This al-
gorithm was shown in numerical experiments to be capable of greater efficiency
than the RTR method.
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